martes, 27 de enero de 2009


Rotulación


+++Definición: La rotulación es el arte de escribir las letras y números con arreglos a unas normas ya establecidas.+++Antecedentes de la rotulación:Fue durante el final del siglo XIX cuando C.W. Reinhardt (antiguo dibujante en jefe de la Engineering News) vio la necesidad de crear un tipo de letra sencilla y legible, que pudiera ser hecha con trazos simples. Es por ello que desarrollo alfabetos de letras mayúsculas y minúsculas, basado en letras góticas y en una serie sistemática de trazos.+++Estandarización de las letras:Después de Reinhardt, se empezaron a desarrollar una diversidad innecesaria y confusa de estilos y formas de letras. Luego interviene entonces la American Standards Association, en 1935 para establecer normas de letras que se conocen hoy en día como estándares (normas ASA).+++Normalización: Los rótulos y cotas utilizados en el dibujo técnico no puede estar a criterio de cada quien, por eso se establecen normas para evitar confusiones.• Venezuela (NORVEN ó COVENIN) fondo norma en Venezuela.• Estados Unidos (ASA) asociación estándar americana.• España (UNE) unificación de normativas españolas.• Argentina (IRAM) instituto argentino de normalización y certificación. • Alemania (DIN) instituto de normas alemanas.ISO (Internacional Organization for Standarization) es una institución que busca unificar los sistemas existentes para beneficio de la tecnología universal. A través de las famosas normas ISO9000.+++Caligrafía DIN:Las letras normalizadas se rigen por las normas DIN, cuyas siglas significan Dat Ist Norm (esto es normal). La caligrafía DIN designa los trabajos colectivos de la comisión alemana de normas. Y existen dos tipos: DIN 16 y DIN 17.+++Caligrafía DIN 17:Es la letra vertical normalizada, es la más utilizada y recomendada para rotular dibujos y dimensiones. Se utiliza este tipo de letra para escribir letreros, ficheros, rotulo de planos, etc.• Letras Corrientes: presentan dimensiones de altura y ancho directamente proporcionales.• Letras estrechas: su alto no es proporcional a su ancho.• Letras anchas: el ancho de las letras es mayor a su altura.+++Caligrafía DIN 16:Es la letra inclinada normalizada. Para muchos es la mas fácil de realizar, el trozo de letra y número es uniforme, su inclinación es de 75º en relación con la línea horizontal. En las letras inclinadas, las partes circulares se hacen de forma elíptica. Se utiliza para la rotulación de planos topográficos.+++Reglas de rotulación:• Ancho de la letra: queda a juicio del rotulante.• Alto de la letra: queda a juicio del rotulante.• Separación entre letras: se toma el ancho de la letra y se divide entre cuatro.• Separación entre palabras: el resultado de la separación entre letras se suma tres veces.• Separación entre líneas: corresponde a la misma medida del alto de la letra.+++Lápices para rotular: El lápiz para hacer rótulos puede ser un lápiz medio suave con punta cónica. Generalmente se usan las series de los H, específicamente 4H ó 6H.Sugerencias:• Afilar el lápiz hasta punta de aguja.• Poner la punta ligeramente roma, haciéndolo girara suavemente sobre un papel.• Entre letras gire ligeramente el lápiz para mantener la punta roma.• Los trazos deben ser bien oscuros y bien delineados.• La rotulación se realiza a mano alzada.• Al momento de rotular se hace uso de líneas guías.+++Importancia de la rotulación:La rotulación es muy importante en el dibujo técnico, mediante ella se aclaran aspectos que el dibujo por si solo no puede explicar.Ejemplo: un pequeño error en el rotulo de un plano de estructura podría generar grandes perdidas a la constructora a la hora de corregir el error.Actualmente existen en el mercado diversos equipos mecánicos para el trazado de letras y números normalizados. Los más sencillos están compuestos de plantillas llamadas normógrafos. También se encuentran letras transferibles o adhesivos



INTRODUCCIÓN

El dibujo es un arte que tiene como objetivo representar gráficamente formas e ideas. Puede realizarse a mano alzada o por medio de instrumentos especializados, observando ciertas reglas o normas.

En este informe hablaremos sobre los tipos, usos y cuidados de los instrumentos utilizados en el Dibujo Técnico como: las reglas, escuadras, tiralíneas, compases, tinta china y otros.

Igualmente, hablaremos sobre los formatos, los tipos de formatos y sobre las normas.

También hablaremos sobre las escalas, sus usos, sus tipos, el escalímetro, el acotamiento, las líneas de cota y las diferentes formas de acotar.

Por último, hablaremos de las líneas que se emplean en el Dibujo Técnico, la clasificación de las líneas entre estas encontramos: la curva, la recta, la vertical, la horizontal, las paralelas, las perpendiculares y otras y luego hablaremos sobre la rotulación.



MATERIALES UTILIZADOS EN EL DIBUJO TÉCNICO

Para obtener buenos resultados en la elaboración del Dibujo Técnico es necesario contar con la buena calidad de los materiales empleados y la habilidad en usarlos.

Los materiales que continuamente usamos en el Dibujo Técnico son:

1. REGLA.
Es un instrumento fundamental que debe poseer todo dibujante. Ella puede ser graduada de acuerdo con el Sistema Métrico Decimal o de acuerdo con el sistema inglés de medida.

- Tipos
Los tipos más comunes son: de madera, metal y plástico; graduada en centímetros, con indicación de los milímetros; de 30 centímetros de longitud; planas o de formas diversas, según el fabricante.

- Uso
El uso de la regla es para trabajar con escala normal, 1: 1, y es un instrumento necesario para el estudiante de dibujo y otros fines. Debe utilizarse solamente para medir, nunca para trazar.

- Cuidado
Como todo instrumento, las reglas están fabricadas para rendir un buen trabajo durante muchos años, siempre y cuando se les utilice dentro de ciertas normas de cuidado y limpieza. Deben evitarse las caídas, golpes, roces y otros accidentes que causan deterioro.
2. REGLA T
Es un instrumento muy común en las salas de dibujo. Para el estudiante significa disponer, para ser utilizada sobre un tablero portátil, del equipo base para la realización de su trabajo.

Los dibujantes profesionales la utilizan para el trazado de líneas horizontales y para apoyar las escuadras al trazar líneas verticales e inclinadas.

- Tipos
Los tipos principales son:
§ De madera. Son totalmente planas y sirven para trabajar con lápiz y portaminas.
§ De madera. Con cantos de material plásticos y fabricados de manera que no tocan el papel. Sirven para trazar líneas con tiralíneas o con plumas fuentes para tinta china.
§ De metal. Útiles para determinados trabajos. Tienen la propiedad de no deformarse.

- Cuidado
Como todos los instrumentos de dibujo, la regla T es delicada y requiere de un trato adecuado. Para su conservación se recomiendan las precauciones siguientes:
§ Mantenerla apoyada en su totalidad sobre una superficie plana.
§ Evitar que sus cantos sufran daños.
§ Al trazar con lápiz debe evitarse hacer presión exagerada contra el canto.
§ Al trazar con tiralíneas debe cuidarse de que éste no cause daños al canto.
§ La Regla T debe limpiarse con un trapo seco y lavarse con bencina.

3. ESCUADRAS
Las escuadras son utilizadas con la Regla T y con la Regla Paralela. Fundamentalmente se les usa para el trazado de líneas verticales e inclinadas a 60°, 45° y 30°, aunque combinándolas se pueden obtener ángulos múltiplos de 15°. Se fabrica también la Escuadra Ajustable, con la cual se puede trazar cualquier ángulo.

4. TIRALÍNEAS
Este instrumento, de uso específico para trazar líneas con tinta china, se fabrica en dos tipos básicos: para trazar líneas rectas y para líneas curvas. Cada tipo ofrece modalidades adicionales para cada clase de papel, así como para la forma y grosor de las líneas.

5. COMPÁS
Para el trazado de circunferencias y arcos se utiliza el compás. Este instrumento es también, como todos los anteriores fundamental para el dibujante.

El compás se fabrica de bronce o de acero. Los tornillos para su ensamblado deben mantenerse ajustados y para lograrlo cada estuche contiene una pequeña herramienta.

Cuando se posee un estuche que contenga varios instrumentos y sus correspondientes piezas intercambiables, es requisito indispensable cuidarlo y evitar pérdidas de piezas que acarrearían la inutilización de todo el equipo.

- Tipos
Se fabrican varios tipos de compases, según las diferentes necesidades del dibujo, los cuales se resumen así:
§ Compás de Bomba.
§ Compás Normal
§ Compás de dos Puntas

- Cuidado
Para lograr un rendimiento máximo del compás es necesario recordar sus aplicaciones y las posibilidades de cada tipo. Además, como todo instrumento de precisión, deben tomarse algunas precauciones para evitar su deterioro, las cuales pueden resumirse así:
§ Proteger constantemente la punta de acero. Su deterioro arruina todo el instrumento.
§ Proteger el tiralíneas para evitar golpes y aporreos que lo deforman. Se logra así un resultado óptimo en la calidad del trazado.
§ Proteger la punta de grafito para evitar su rotura.
§ Mantener afilada la punta de grafito para lograr la perfección del trazado.


6. TABLERO DE DIBUJO

Para realizar un dibujo es necesario disponer de una superficie apropiada y dotada de algunos auxiliares básicos. Esta superficie es el tablero de dibujo, el cual puede disponer de su propia armadura de apoyo o ser, simplemente, un tablero que debe ser apoyado sobre una mesa o armadura.

El tablero es de madera y construido de modo tal que no se produzcan dobladuras ni pandeos. Cuando se estudia dibujo es conveniente que se trabaje en un tablero apropiado para lograr adquirir el hábito y la destreza en la utilización de los instrumentos apropiados.

En la actualidad, con los progresos alcanzados por la industria del plástico, se ofrecen en el comercio Tableros de Dibujo fabricados en material sintético. Este tipo de tablero abarata considerablemente el precio de venta y hace posible su adquisición por los estudiantes.

7. PLUMAS PARA TINTA CHINA

Los instrumentos modernos, que están a disposición de los dibujantes profesionales, ayudan en la precisión, perfección y limpieza del trabajo. Debido a los métodos modernos de fabricación, los precios han bajado hasta el límite que hace posible la utilización de esos instrumentos por los estudiantes de dibujo. Un ejemplo de lo anotado son las plumas para tinta china.

- Estuches
Este tipo de pluma se le puede adquirir individualmente, en estuches de varias y hasta en estuches complejos, donde está hasta la tinta para recargarlas

- Cuidado
Su mantenimiento es un poco más complejo que las plumas convencionales. Sin embargo, resulta económico su cuidado cuando se les utiliza con regularidad.

8. PLANTILLAS PARA CURVAS IRREGULARES

Las plantillas para curvas irregulares se utilizan para trazar aquellas líneas con radios de curvaturas variables.

Los contornos de estas plantillas están hechos mediante el sistema de combinación de elipses, espirales y otras curvas matemáticas.

Para utilizar estas plantillas el dibujante debe trazar primeramente la sucesión de puntos que determinan el rumbo de la curva. Luego hace coincidir la plantilla con los puntos, lo cual se logra solamente por aproximación.

9. LAPICES
El lápiz es fundamental para todo dibujante. Pero no todos los lápices sirven para dibujar. Es necesario utilizar aquellos fabricados específicamente para este fin.

- Minas
Los lápices para dibujar están fabricados con minas de grafito, las cuales se pueden adquirir en una escala de dureza que va desde el más suave hasta el más duro.

- Portaminas
Las minas de grafito con las cuales se fabrican los lápices se obtienen sin las cubiertas de madera. Para utilizarlas se dispone de un portamina, el cual consiste en una manga metálica con un mecanismo automático para sacar la mina.

- Denominación
La denominación, según su grado de dureza, es la siguiente:
Características
Clasf.
Uso
Muy blando y negro
Muy blando y muy negro
4 B
3 B
Demasiado
Blando
Blando y muy negro
Blando y negro
2 B
B
Croquis
Rotulación
Semi blando y negro
HB

Semi blando
Duro
Más duro
F
H
2 H

Para delinear
Muy duro
Notablemente duro
Muy duro
3 H
5 H
6 H

Para trazados
Dureza de Piedra
7 H
Demasiado Duro

10. BORRADORES
Todo trabajo de dibujo requiere del trazado de líneas provisionales, o auxiliares, que deben eliminarse al realizar el trazado definitivo.

Además, hay que tomar en cuenta que siempre habrá la necesidad de enmendar o corregir determinados trazos. Por ambas razones, se requiere de un material apropiado, denominado borrador.

- Tipos
Se fabrican diferentes tipos, de acuerdo con las necesidades especificadse cada trabajo. Así, se dispone de borradores para varias clases de lápices, de tinta china, de papel y plástico.

- Goma con porta goma
Son muy útiles, también, las gomas para borrar fabricadas en forma de lápiz. Se pueden obtener además para ser usadas con porta goma. Son muy útiles cuando se realizan trabajos pequeños.

11. TRANSPORTADOR
El transportador es un instrumento para medir ángulos. Consiste en un círculo con divisiones de grados y minutos.

Cuando se les fabrica sobre una circunferencia completa, consta de 360°. Cada grado está subdividido en 10’. En algunos instrumentos cada minuto tiene una subdivisión, que indica 30”.

También es muy común un transportador fabricado de medio círculo. En este caso solamente tiene indicados 180°.

Como todo instrumento de dibujo, el transportador requiere un cuidado muy especial. El daño que sufra su borde impide apreciar correctamente la indicación en la lectura.

12. TINTA CHINA
Es un líquido de color negro, fluido, inalterable a la luz y viene en frascos provistos de portaplumas o de tubos con capuchón.
- Manera de usarla
En todo caso, una vez llegado el momento de usarla, es requisito fundamental recordar los puntos siguientes referentes a su manipulación óptima:
§ No dejar destapado el envase.
§ Limpiar los instrumentos inmediatamente después de utilizados.
§ Usar agua fresca para lavar los instrumentos sucios con tinta china.
§ Cuando se trata de limpiar plumillas de plumas fuentes, tiralíneas, u otro instrumento pequeño, es conveniente dejarlos remojando en un envase con agua y detergente.

13. ESCALÍMETROS
Los escalímetros son instrumentos de medición, semejantes a una regla, generalmente de forma triangular aunque también los hay planos. Comúnmente se construyen de madera, metal, material plástico...

El escalímetro más utilizado es el de forma triangular; tiene, generalmente, una longitud de 30 cms., consta de tres caras y en cada cara posee dos escalas. En consecuencia, con un escalímetro triangular podemos manejar seis escalas diferentes, sus vértices forman ángulos agudos sin curvaturas que nos permiten realizar una lectura más exacta de la escala utilizada.


14. PAPEL
La hoja de papel es una lámina delgada consistente en fibras de celulosa reducidas a pasta por procedimientos químicos y mecánicos, y obtenidas de trapos, madera, esparto (planta gramínea), etc. Se usa para escribir, dibujar, imprimir, etc.

- Tipos
Principalmente para el dibujo se distinguen dos tipos de papel:
§ Papel Opaco: Su color varía desde el blanco hasta el amarillento y es ligeramente brillante.
§ Papel Traslúcido o Vegetal: Esta clase de papel es notablemente transparente y de tono blanco azulado. Tiene la característica de permitir el paso de la luz a través de él, lo que facilita ver con claridad cualquier dibujo que esté debajo del mismo. Además, es el adecuado para trabajar con tinta china, la cual se puede borrar, si es necesario, con bastante facilidad sin que se deteriore el papel.


FORMATO
Es el recuadro dentro del cual se realizan todos los dibujos técnicos.

Estos recuadros o formatos están normalizados; es decir, están sujetos a determinadas normas o reglas que se deben seguir para su elaboración.

Para la elaboración de los formatos: medidas del formato bruto, del formato final y de los márgenes, utilizaremos la norma DIN A o serie DIN A.

La serie DIN A establece que todos los formatos deben ser:
- Semejantes.
- Medidos en milímetros.
- De forma rectangular.
- Y tal que su altura sea igual a su base multiplicada por la raíz de dos.

NOTA: Se toma a 1,41 como aproximación de la raíz de dos, ya que este resultado es 1,414213562.

El formato base o formato de origen de la serie DIN A es el A0, cuyas dimensiones brutas son:
- base = 880
- Altura = 1.230
y cuya área es, aproximadamente, un metro cuadrado (1m2).

Las dimensiones finales de este formato son:
- base = 841
- Altura = 1.189

La justificación del porqué se obtiene un formato normalizado según la serie DIN A multiplicando la base por la raíz de 2 es porque la norma establece que el formato debe obtenerse construyendo un triángulo cuyos catetos sean iguales a la base y la altura debe ser la hipotenusa de dicho triángulo.

Debe saber que por el Teorema de Pitágoras la hipotenusa de un triángulo rectángulo es igual a un cateto multiplicado por la raíz de 2.


Formatos de la serie DIN A

Tipo de
Formato
Formato en Bruto
(Medidas mínimas en mm)
Formato Final
(Cortado)
Margen A
mm
4 A 0
1720 x 2420
1682 x 2378
20

2 A 0
1230 x 1720
1189 x 1682
15

A 0
880 x 1230
841 x 1189
10

A 1*
625 x 880
594 x 841
10

A 2
450 x 625
420 x 594
10

A 3
330 x 450
297 x 420
10

A 4**
240 x 330
210 x 297
5

A 5
165 x 240
148 x 210
5

A 6
120 x 165
105 x 148
5

* Formato para trabajos industriales.
** Formato indicado para trabajos escolares.

Entre los tipos de formatos se pueden destacar:

§ Formatos Escolares
En nuestros institutos de enseñanza se utiliza con mucha frecuencia los formatos A4, que tienen las siguientes dimensiones:

Formato Bruto (medidas mínimas):
240 x 330 mm.

Formato Final (cortado) 210 x 297 mm.; estas dimensiones del papel nos permiten trabajar directamente sobre los pupitres.

§ Formatos Industriales:
Estos formatos están normalizados al igual que los formatos escolares.

Los formatos de la serie A constituye formatos finales y se utilizan generalmente en el campo industrial, en la elaboración de planos de construcción, topografía, estructuras, instalaciones eléctricas, sanitarias, etc.

ESCALAS
La escala es la relación que existe entre un objeto dibujado y el objeto en la realidad.

Se utiliza como escala, generalmente, un numero fraccionado cuyo numerador es la unidad, por ejemplo, 1 : 50; en este ejemplo el objeto real es 50 veces mayor que el objeto dibujado.

Hay que conocer la escala a la cual se realizan los dibujos para poder establecer sus dimensiones y calcular la superficie representada o el tamaño exacto del objeto.

§ Uso de las escalas
Cuando se dibuja un objeto cualquiera a una escala determinada es necesario, más que reducir o aumentar sus dimensiones, lograr la proporción indicada por la escala.

Generalmente la escala se expresa en los dibujos en forma numérica. También se utilizan las escalas gráficas, que se representan mediante segmentos de recta divididos en partes iguales que señalan longitudes del dibujo equivalentes a las del objeto real que se desea representar.

Las escalas más utilizadas en dibujo técnico son: 1 : 100; 1 : 125;
1 : 120; 1 : 25; 1 : 50; 1 : 75. Todas estas escalas se pueden utilizar mediante un instrumento para dibujo llamado “escalímetro” del cual hemos hablado anteriormente.

ACOTAMIENTO

Cuando se representa un objeto a escala es imprescindible utilizar determinadas líneas auxiliares para indicar distancias entre determinados puntos o elementos del objeto dibujado. Estas líneas especiales se denominan líneas de cota y la distancia que representan es la cota, en resumen, acotar es determinar las distancias existentes entre diversos puntos de un dibujo, utilizando líneas de cota.

El valor de un dibujo depende de las cotas utilizadas en él. Mediante las cotas obtenemos la descripción del objeto dibujado: sus dimensiones y su forma. Para poder acotar es necesario conocer diversas técnicas y simbologías; a saber:

a) Las líneas de cota deben ser de trazos finos y terminadas, generalmente, en puntas de flecha que se acostumbra dibujar cuidadosamente y a mano alzada. La punta de la flecha puede ser rellena o sin rellenar.

b) El valor numérico de la cota, es decir, el número que mide la distancia existente entre dos puntos determinados del dibujo, debe colocarse, siempre que sea posible, en la mitad de la línea de cota.

c) Las líneas de cota deben colocarse en forma ordenada, en partes visibles y que no interfieran con el dibujo, de manera que se facilite su interpretación.
Entre una línea de cota y una arista del dibujo debe mantenerse una distancia mínima de 10 mm.

d) Para acotar el diámetro de una circunferencia debe agregársele, al valor numérico de la cota, el símbolo O.

e) Para acotar el radio de una circunferencia debe agregársele, al valor numérico de la cota, el símbolo r. La línea de cota sólo lleva una punta de flecha.

f) Para acotar entre ejes de figuras éstos se prolongan a manera de que sirvan como líneas auxiliares de cota.

g) Para acotar internamente se pueden utilizar las propias aristas del dibujo como líneas auxiliares de cota.

h) Para acotar ángulos frecuentemente es necesario trazar una línea auxiliar de cota que sirva como uno de los lados del ángulo. La línea de cota debe ser un arco de circunferencia.

LÍNEAS CONVENCIONALES USADAS EN EL DIBUJO TÉCNICO

En el dibujo, las líneas tienen que ser claras y definidas, con el fin de lograr un trabajo con buena presentación y con una disposición perfecta. Las líneas, al igual que su espesor, estarán en función directa de lo que represente el dibujo.

Clasificación de las líneas
Las líneas se clasifican según su forma, su posición en el espacio y la relación que guardan entre sí.

Recta
Curva
Según su forma: Quebrada
Mixta





Según su Vertical
posición en el espacio: Horizontal
Inclinada


Paralelas
Oblicuas
Según la relación Convergentes
que guardan entre sí: Divergentes
Perpendiculares

Según su forma

1. Línea Recta: Son todas aquellas líneas en que todos sus puntos van en una misma dirección.

2. Línea Curva: Son las líneas que están constituidas en forma curva; pero a su vez sus puntos van en direcciones diferentes.

3. Línea Quebrada: Esta línea está formada por diferentes rectas a su vez que se cortan entre sí y llevan direcciones diferentes.

4. Línea Mixta: Está formada por líneas rectas y curvas que a su vez llevan direcciones diferentes.


Según su posición en el espacio

1. Línea Vertical: Es la línea recta perpendicular al horizonte.

2. Línea Horizontal: Es la línea que corresponde al nivel del agua cuando esta se encuentra en reposo.

3. Línea Inclinada: Es la línea que desiste de su posición vertical y horizontal y presenta un extremo inclinado hacia uno de sus lados.


Según la relación que guardan entre sí

1. Líneas Paralelas: Son dos o más líneas que estando en un mismo plano jamás llegan a unirse al proyectarse sus extremos.

2. Línea Oblicua: Es la línea que se encuentra con la horizontal formando un ángulo que no es recto.

3. Líneas Convergentes: Son líneas que partiendo de puntos diferentes se unen en otro al proyectar sus extremos.

4. Líneas Divergentes: Son las líneas que parten de un mismo punto y al proyectar sus extremos se separan en direcciones diferentes.

5. Línea Perpendicular: Es la línea que se encuentra con la horizontal formando un ángulo recto.


Líneas que se emplean en el Dibujo Técnico

1. Línea Llena y Gruesa: Para destacar aristas visibles de cuerpos y contornos.

2. Línea Llena y Delgada: Línea de cota y auxiliares de cotas (para señalar diferentes longitudes).

3. Línea de Trazos Cortos: Para aristas y contornos ocultos (no visibles).

4. Línea de Trazos y Puntos: Se utiliza para líneas de ejes y centrales. Esta línea debe comenzar y terminar en trazos.

5. Línea a mano alzada: Se utiliza para indicar roturas en metales, piedras y madera.

6. Línea de Zig – Zag: Se utiliza para hacer interrupciones.


ROTULACIÓN

Se le concede gran importancia al uso de las letras y números que en le dibujo se utilizan para aclaraciones, especificaciones y medidas ya que ello actúa como indispensable complemento de un buen trabajo. Un dibujo puede estar perfectamente bien ejecutado; pero una letra mal trazada o cuyo tipo no corresponda al que debe utilizarse en ese dibujo, lo arruinaría completamente.

Para una buena rotulación debes tomar muy en cuenta las siguientes normas:
ü Conocer su forma correcta.
ü Trazar líneas de guía para su altura.
ü Trazar líneas de guía para su inclinación.
ü Orden y sentido de los trazos.

Líneas de Guía para la altura

No existen normas fijas en cuanto a las medidas y proporciones que deben tener las letras, signos y símbolos rotulados; pero cualquiera que sean, estas medidas deben determinarse mediante dos líneas auxiliares o líneas de guía, una superior y una inferior. La distancia entre estas dos líneas de guía nos determina el alto de cada elemento rotulado.

Las líneas de guía deben ser paralelas, muy finas y trazadas con la mina del lápiz bien aguda.

Entre cada par de líneas guía debe mantenerse la misma distancia a fin de obtener uniformidad en la rotulación. Dicha distancia se recomienda determinar con un compás de punta seca o bigotera.

ROTULADO

rotulado

jueves, 22 de enero de 2009

lunes, 19 de enero de 2009

SEGURIDAD INDUSTRIAL

Seguridad Industrial
Produccion de Metales Ferrosos

TECNOLOGIA DE LOS MATERIALES

Ciencia y tecnología de los materiales
Introducción; Avances recientes; Propiedades mecánicas de los materiales
1

Introducción
Ciencia y tecnología de los materiales, estudio de los materiales, tanto metálicos como no metálicos, y de la forma de adaptarlos y fabricarlos para responder a las necesidades de la tecnología moderna. Empleando las técnicas de laboratorio y los instrumentos de investigación de la física, la química y la metalurgia, los científicos están hallando nuevas formas de utilizar el plástico, la cerámica y otros no metales en aplicaciones antes reservadas a los metales.
2

Avances recientes
El rápido desarrollo de los semiconductores para la industria electrónica, que comenzó a principios de la década de 1960, dio el primer gran impulso a la ciencia de materiales. Después de descubrir que se podía conseguir que materiales no metálicos como el silicio condujeran la electricidad de un modo imposible en los metales, científicos e ingenieros diseñaron métodos para fabricar miles de minúsculos circuitos integrados en un pequeño chip de silicio. Esto hizo posible la miniaturización de los componentes de aparatos electrónicos como los ordenadores o computadoras.
A finales de la década de 1980, la ciencia de los materiales tomó un nuevo auge con el descubrimiento de materiales cerámicos que presentan superconductividad a temperaturas más elevadas que los metales. Si se consigue encontrar nuevos materiales que sean superconductores a temperaturas suficientemente altas, serán posibles nuevas aplicaciones, como trenes de levitación magnética o computadoras ultrarrápidas.
Aunque los últimos avances de la ciencia de materiales se han centrado sobre todo en las propiedades eléctricas, las propiedades mecánicas siguen teniendo una gran importancia. En la industria aeronáutica, por ejemplo, los científicos han desarrollado —y los ingenieros han probado— materiales compuestos no metálicos, más ligeros, resistentes y fáciles de fabricar que las aleaciones de aluminio y los demás metales actualmente empleados para los fuselajes de los aviones.
3

Propiedades mecánicas de los materiales
En ingeniería se necesita saber cómo responden los materiales sólidos a fuerzas externas como la tensión, la compresión, la torsión, la flexión o la cizalladura. Los materiales sólidos responden a dichas fuerzas con una deformación elástica (en la que el material vuelve a su tamaño y forma originales cuando se elimina la fuerza externa), una deformación permanente o una fractura. Los efectos de una fuerza externa dependientes del tiempo son la plastodeformación y la fatiga, que se definen más adelante.
La tensión es una fuerza que tira; por ejemplo, la fuerza que actúa sobre un cable que sostiene un peso. Bajo tensión, un material suele estirarse, y recupera su longitud original si la fuerza no supera el límite elástico del material (véase Elasticidad). Bajo tensiones mayores, el material no vuelve completamente a su situación original, y cuando la fuerza es aún mayor, se produce la ruptura del material.
La compresión es una presión que tiende a causar una reducción de volumen. Cuando se somete un material a una fuerza de flexión, cizalladura o torsión, actúan simultáneamente fuerzas de tensión y de compresión. Por ejemplo, cuando se flexiona una varilla, uno de sus lados se estira y el otro se comprime.
La plastodeformación es una deformación permanente gradual causada por una fuerza continuada sobre un material. Los materiales sometidos a altas temperaturas son especialmente vulnerables a esta deformación. La pérdida de presión gradual de las tuercas, la combadura de cables tendidos sobre distancias largas o la deformación de los componentes de máquinas y motores son ejemplos visibles de plastodeformación. En muchos casos, esta deformación lenta cesa porque la fuerza que la produce desaparece a causa de la propia deformación. Cuando la plastodeformación se prolonga durante mucho tiempo, el material acaba rompiéndose.
La fatiga puede definirse como una fractura progresiva. Se produce cuando una pieza mecánica está sometida a un esfuerzo repetido o cíclico, por ejemplo una vibración. Aunque el esfuerzo máximo nunca supere el límite elástico, el material puede romperse incluso después de poco tiempo. En algunos metales, como las aleaciones de titanio, puede evitarse la fatiga manteniendo la fuerza cíclica por debajo de un nivel determinado. En la fatiga no se observa ninguna deformación aparente, pero se desarrollan pequeñas grietas localizadas que se propagan por el material hasta que la superficie eficaz que queda no puede aguantar el esfuerzo máximo de la fuerza cíclica. El conocimiento del esfuerzo de tensión, los límites elásticos y la resistencia de los materiales a la plastodeformación y la fatiga son extremadamente importantes en ingeniería.

Tecnología de materiales
La tecnología de materiales es el estudio y puesta en práctica de técnicas de análisis, estudios físicos y desarrollo de materiales.
Contenido
1 Propiedades de los materiales
1.1 Propiedades mecánicas
1.2 Propiedades ópticas
1.3 Clasificación Materiales

Propiedades de los materiales
Propiedades mecánicas
Dureza: es la resistencia de un cuerpo a ser rayado por otro. Un cuerpo es más duro que otro ya que sus moléculas están muy unidas y tensas como para dejarse penetrar. La propiedad opuesta a duro es blando. El diamante es duro porque es difícil de rayar.
resistencia se refiere a la propiedad que presentan los materiales para soportar las diversas fuerzas a que pueden ser sometidos.
Blando: es la poca resistencia que ofrece un cuerpo a ser rayado por otro, un cuerpo es tanto más blando cuando la fuerza necesaria para rayarlo es tanto más pequeña, la propiedad opuesta a blando es duro, el yeso es blando porque se raya con facilidad.
Tenacidad: la tenacidad es la resistencia que opone un cuerpo a romperse por un impacto, un cuerpo es tanto más tenaz cuando el choque necesario para romperlo tenga que ser más fuerte. La propiedad opuesta a tenaz es frágil, ejemplo, la madera es tenaz, dado que es necesario un choque muy violento para romperla.
Fragilidad: es la facilidad con la que un cuerpo se rompe por un choque, propiedad opuesta a tenacidad, el vidrio es frágil porque con un pequeño golpe se rompe.
Elasticidad (mecánica de sólidos)Elasticidad]]: la elasticidad es la capacidad de los cuerpos de recuperar su forma original tras una deformación, un cuerpo elástico se deforma cuando se ejerce una fuerza sobre él, pero cuando esa fuerza desaparece, el cuerpo recupera su forma original, la propiedad opuesta a elasticidad es plasticidad. La goma es elástica, si se ejerce una fuerza, por ejemplo sobre una pelota de goma, esta se deforma, cuando deja de ejercer la fuerza la pelota recupera su forma original.
Plasticidad: la plasticidad es la propiedad del cuerpo por la que una deformación se hace permanente, si sobre un cuerpo plástico ejercemos una fuerza este se deforma, cuando la fuerza desaparece la deformación permanece, la propiedad opuesta a plasticidad es elasticidad. Un ejemplo es la arcilla fresca, si se aplica una fuerza sobre ella se deforma, cuando deja de ejercer la fuerza la deformación permanece.
Maleabilidad: es la propiedad de la materia, que junto a la ductilidad presentan los cuerpos a ser labrados por deformación. Se diferencia de aquélla en que mientras la ductilidad se refiere a la obtención de hilos, la maleabilidad permite la obtención de delgadas láminas de material sin que éste se rompa, teniendo en común que no existe ningún método para cuantificarlas. El elemento conocido más maleable hasta la fecha es el oro, que se puede malear hasta láminas de diezmilésima de milímetro de espesor. También presenta esta característica, en menor medida, el aluminio, habiéndose popularizado el papel de aluminio como envoltorio conservante para alimentos, con posibles efectos adversos para la salud, así como en la fabricación de tetra-brick.
Ductilidad: La ductilidad es la propiedad que presentan algunos metales y aleaciones cuando, bajo la acción de una fuerza, pueden estirarse sin romperse permitiendo obtener alambres o hilos. A los metales que presentan esta propiedad se les denomina dúctiles. En el ámbito de la metalurgia se entiende por metal dúctil aquel que sufre grandes deformaciones antes de romperse, siendo el opuesto al metal frágil, que se rompe sin apenas deformación.
No debe confundirse dúctil con blando, ya que la ductilidad es una propiedad que se manifiesta una vez que el material está soportando una fuerza considerable; esto es, mientras la carga sea pequeña, la deformación también lo será, pero alcanzado cierto punto el material cede, deformándose en mucha mayor medida de lo que lo había hecho hasta entonces pero sin llegar a romperse. Así mismo tampoco debemos confundir entre duro y tenaz, este último es la energía acumulada al aplicarse una fuerza, al contrario que la dureza que es la resistencia a la deformación en general.
En un ensayo de tracción, los materiales dúctiles presentan una fase de fluencia caracterizada por una gran deformación sin apenas incremento de la carga.
Propiedades ópticas
Opaco - Impide el paso a la luz
Translúcido - Deja pasar la luz, pero que no deja ver nítidamente los objetos.
Transparente - Dicho de un cuerpo a través del cual pueden verse los objetos claramente.
Clasificación Materiales
Para clasificar los materiales que intervienen en el proceso constructivo, se pueden adoptar varios criterios, por ejemplo: según su función o utilización, según el orden en que intervienen en la obra, según su composición, o según el origen de cada uno de los materiales. Según su origen se pueden clasificar en: - Materiales naturales: Se pueden definir como aquellos que se encuentran en la naturaleza, tanto si son de origen mineral (piedras naturales, materiales metálicos, etc.) como de origen orgánico (madera, caucho, etc.), los cuales constituyen los materiales básicos y a partir de estos se fabrican los distintos productos que existen en el mercado. Estos recursos naturales pueden ser: -Renovables: no existe peligro de que se agoten con el paso del tiempo. -No renovables: los que se agotan con el paso de los años. - Materiales sintéticos o de origen artificial: Son materiales que han sido creados por el hombre y es preciso aplicar una determinada técnica para fabricarlos. En este caso también nos podemos encontrar con materiales fabricados a partir de una primera materia mineral (cerámica, hormigón, etc.) o de origen orgánico (tejidos, plásticos, etc.). De forma más detallada se puede establecer la siguiente clasificación: - Piedras naturales: Rocas o materiales de origen rocoso que han estado sometidos a diferentes acciones físicas por la naturaleza (presiones y altas temperaturas en el interior de la tierra, erosión provocada por agentes atmosféricos, etc.). Ejemplos de este tipo de materiales son el granito, el mármol o la pizarra, entre otros. - Piedra artificiales cerámicas: Materiales procedentes de la cocción de la arcilla (cerámica) o de la fusión de arenas silíceas (vidrio). - Materiales conglomerantes: Materiales en polvo que, con la incorporación de agua, ofrecen la propiedad de unir otros materiales sueltos (yeso, cemento, cal, etc.) - Piedras artificiales conglomeradas: Materiales obtenidos artificialmente, a partir de la aglutinación de materiales pétreos (grava, arena, etc.), por medio de la hidratación de los materiales conglomerantes mencionados en el apartado anterior (mortero, hormigón, etc.) - Materiales metálicos: Productos obtenidos a partir de diversos metales naturales (hierro, aluminio, cobre, plomo, etc.) o bien a partir de aleaciones entre ellos o con otros productos (acero, bronce, etc.). - Materiales bituminosos: Productos obtenidos artificialmente a partir de diversos hidrocarburos que tienen como propiedad dominante la impermeabilidad, como, por ejemplo, betún, asfalto, alquitrán, etc. - Plastómeros y elastómeros: Los plastómeros (plásticos) son materiales obtenidos químicamente a partir de diferentes sustancias orgánicas y que son capaces de adquirir forma si se les somete a la acción del calor y de la presión (polietileno, PVC, metacrilato, etc.). Los elastómeros son los productos que, a pesar de su origen parecido, tienen una elevada elasticidad (son conocidos también como cauchos sintéticos), como, por ejemplo, el neopreno. - Pinturas: Son mezclas líquidas, con cierta viscosidad, y con pigmentaciones que le dan color, obtenidas a partir de diferentes componentes, y que se aplican como recubrimiento de acabado superficial de los materiales de construcción. - Materiales de origen vegetal: Son materiales orgánicos procedentes del aprovechamiento de árboles y plantas (madera, corcho, papel, linóleo, etc.).
Tecnología de los Materiales II
En el presente trabajo vamos a ver a grandes rasgos algunos conceptos que

Indice.

1.Introducción.

2.Historia de los materiales y su clasificación.

3.Tipos de materiales.

4.Enlaces existentes para su configuración.

5.Estructuras cristalinas.

6.Aceros.

7.Microestructura de los aceros.

8.Cementita y otros (microfotografias)

9. Tipos de hornos.

10. Conclusiones

11. Bibliografía.


1. Introducción.
integran la materia de Tecnología de los Materiales, los cuales nos servirán para poder tener en claro algunas ideas que nos servirán para tener una comprensión mas clara de dicha materia, así mismo nos permitirá familiarizarnos con la industria del acero sus tratamientos y aplicaciones a la industria y a la vida diaria, algunos de los conceptos que trataremos será: Historia de los materiales y su evolución a través de loa años, veremos que esto ha ejercido cierta influencia en las sociedades de todo el mundo, veremos la clasificación de los materiales como son los metales, cerámicos y los plásticos, así también veremos las propiedades físicas y químicas de dichos materiales y el como conocerlas nos permite trabajar de una manera mas eficiente con ellos también veremos las estructuras cristalinas, el como conocer la estructura interna de los materiales nos permite darles un mejor uso y que puedan se de mejor aprovechamiento, así también los tratamientos térmicos que dichos materiales pueden recibir con el objeto de darles una mayor durabilidad y mejor aplicaciones a la industria, otro aspecto que trataremos será los aceros y como su uso y aplicaciones a lo largo del tiempo ha evolucionado y mejorado, algo que no podría faltar son los enlaces químicos y como conocerlos nos da ideas sobre el uso y aplicación de los materiales, anexaremos también un pequeño laboratorio de maquinas que su uso es las famosas pruebas de tensión, dureza, fatiga e impacto, las cuales nos permiten checar la calidad de los materiales de una manera cualitativa y cuantitativa veremos la grafica de Hierro Carburo de Hierro, la cual es usada en los procesos de fundición del acero, dicha grafica es de singular uso, ya que en ella se pueden observar todos los procesos de fundición del acero y de cómo este se trabaja, agregaremos también algunas microfotografias de las estructuras de la austenita, ferrita y otras, en ellas se puede observar los granos y también que distingue a una de la otra, es decir la micro estructura de los aceros, a lo largo de de este curso se podrán ver muchos conceptos que en su totalidad nos permiten asimilar como la industria de los materiales ha progresado y que aun los ingenieros hoy en día trabajan con el único fin de descubrir nuevos materiales y reinventar los ya conocidos con el fin de mejorar la economía y poder aprovechar de manera optima los recursos que se tienen a la mano, a lo largo de las ultimas décadas este ha sido el quehacer de la industria, no tan solo en los materiales sino en todas sus ramas, la evolución de la industria y los nuevos tiempos traen mayores necesidades y es responsabilidad nuestra la optimización de los procesos industriales. Todas las industrias hoy buscan mejorar los procesos y poder rehusar las mermas, todo como una cultura de reciclaje y mejora de la industria, la economía y el bienestar de la comunidad en conjunto; este trabajo tratara de darnos esas ideas para ser mas concientes y además para mejorar nuestro conocimiento de la ciencia y la tecnología de los materiales, debido a que no podemos quedarnos ausentes de los cambios que en nuestra industria se generan momento a momento, es de gran importancia el conocimiento de dichas tecnologías, aunque estas no estén presentes en nuestra vida de manera constante; esperamos que este material sea de provecho y utilidad para de uno u otro modo mejorar nuestra cultura de la industria y del uso adecuado y conciente de la materia prima, que de uno u otro modo debemos de ser cuidadosos en el uso que pretendamos darle a este recurso, los cambios día con día son irremediables y somos victimas de ellos y tenemos que caminar de la mano y a la par con ellos para poder sobrevivir económicamente, como economía nacional y como una economía individual, vera en este trabajo cada uno de los conceptos básicos que ayudan a saber y conocer mas de los materiales, ojala a medida que lo lea pueda disfrutar de el y hacer un uso correcto, el material es introductorio y no pretende ser un estudio detallado de los conceptos. Antes bien proporciona ideas y conceptos claros de esta ciencia y tecnología de los materiales, para el aprendiz nuevo y deseoso de buscar.


2. Historia de los materiales y su clasificación
Los materiales son las sustancias que componen cualquier cosa o producto .Desde el comienzo de la civilización, los materiales junto con la energía han sido utilizados por el hombre para mejorar su nivel de vida. Como los productos están fabricados a base de materiales , estos se encuentran en cualquier parte alrededor nuestro .Los mas comúnmente encontrados son madera , hormigón , ladrillo , acero , plástico , vidrio , caucho , aluminio , cobre y papel . Existen muchos mas tipos de materiales y uno solo tiene que mirar a su alrededor para darse cuenta de ello. Debido al progreso de losprogramas de investigación y desarrollo, se están creando continuamente nuevos materiales.La producción de nuevos materiales y el procesado de estos hasta convertirlos en productos acabados, constituyen una parte importante de nuestra economía actual. Los ingenieros diseñan la mayoría de los productos facturados y los procesos necesarios para su fabricación. Puesto que la producción necesita materiales, los ingenieros deben conocer de la estructura interna y propiedad de los materiales, de modo que sean capaces de seleccionar el mas adecuado para cada aplicación y también capaces de desarrollar los mejores métodos de procesado.
Los ingenieros especializados en investigación trabajan para crear nuevos materiales o para modificar las propiedades de los ya existentes. Los ingenieros de diseño usan los materiales ya existentes, los modificados o los nuevos para diseñar o crear nuevos productos y sistemas. Algunas veces el problema surge de modo inverso: los ingenieros de diseño tienen dificultades en un diseño y requieren que sea creado un nuevo material por parte de los científicos investigadores e ingenieros.La búsqueda de nuevos materiales progresa continuamente. Por ejemplo los ingenieros mecánicos buscan materiales para altas temperaturas, de modo que los motores de reacción puedan funcionar mas eficientemente. Los ingenieros eléctricos procuran encontrar nuevos materiales para conseguir que los dispositivos electrónicos puedan operar a mayores velocidades y temperaturas.


3. Tipos de materiales
Por conveniencia la mayoría de los materiales de la ingeniería están divididos en tres grupos principales materiales metálicos, poliméricos, y cerámicos
Materiales metálicos. Estos materiales son sustancias inorgánicas que están compuestas de uno o mas elementos metálicos, pudiendo contener también algunos elementos no metálicos, ejemplo de elementos metálicos son hierro cobre, aluminio , níquel y titanio mientras que como elementos no metálicos podríamos mencionar al carbono.Los materiales de cerámica , como los ladrillos , el vidrio la loza , los aislantes y los abrasivos , tienen escasas conductividad tanto eléctrica como térmica y aunque pueden tener buena resistencia y dureza son deficientes en ductilidad , conformabilidad y resistencia al impacto.Polímetros, en estos se incluyen el caucho (el hule), los plásticos y muchos tipos de adhesivos. Se producen creando grandes estructuras moleculares a partir de moléculas orgánicas obtenidas del petróleo o productos agrícolas.
Fases componentes de un sólido desde su estructura intermolecularUna sustancia pura como el agua puede existir en las fases sólido, liquido y gas, dependiendo de las condiciones de temperatura y presión. Un ejemplo familiar para todos de dos fases de una sustancia pura en equilibrio es un vaso de agua con cubos de hielo. En este caso el agua, sólida y liquida, da lugar a dos fases distintas separadas por una fase limite, la superficie de los cubos de hielo. Durante la ebullición del agua, el agua líquida y el agua vapor son dos fases en equilibrio. Una representación de las fases acuosas que existen bajo diferentes condiciones de presión y temperatura se muestra en la En el diagrama de fases presión-temperatura (PT} del agua existe un punto triple a baja presión (4579 torr) y baja temperatura (0,0098 0C) donde las fases sólida, liquida y gaseosa coexisten. Las fases liquida y gaseosa existen a lo largo de la línea de vaporización y las fases líquida y sólida a lo largo de la línea de congelación, como se muestra en la Figura 8.1. Estas líneas son líneas de equilibrio entre dos fases.El diagrama de fases en equilibrio (PT) se puede construir también para otras sustancias puras. Por ejemplo, el diagrama de fases de equilibrio PT del hierro puro se muestra en la Figura 8.2. Una diferencia fundamental de este diagrama de fases es que tiene tres fases sólidas distintas y separadas: Fe alfa (~, Fe gamma (y) y Fe delta (~).El hierro ~ y <5>


4. Enlaces existentes para su configuración.
Enlaces metálicosEn metales en estado sólido, los átomos se encuentran empaquetados relativamente muy juntos en una ordenación sistemática o estructura cristalina. Por ejemplo la disposición de los átomos de cobre en el cobre cristalino consiste que los átomos están tan juntos que sus electrones externos de valencia son atraídos por los núcleos de sus numerosos vecinos. En el caso del cobre sólido cada átomo está rodeado por otros 12 átomos más próximos. Los electrones de valencia no están por lo tanto asociados férreamente a un núcleo en particular y así es posible que se extiendan entre los átomos en forma de una nube electrónica de carga de baja densidad o gas electrónico. Los átomos en un enlace metálico sólido se mantienen juntos por enlace metálico para lograr un estado de más baja energía (o más estable). Para el enlace metálico no hay restricciones sobre pares electrónicos como en el enlace covalente o sobre la neutralidad de carga como en el enlace iónico. En el enlace metálico los electrones de valencia más externos de los átomos son compartidos por muchos átomos circundantes y de este modo, en general, el enlace metálico no resulta direccional Fuerzas de Van der WaalsExcepto en un gas muy dispersado las moléculas ejercen atracciones y repulsiones entre sí. Estas proceden fundamentalmente de interacciones dipolo-dipolo. Las moléculas no polares se atraen entre sí mediante interacciones débiles dipolo-dipolo llamadas fuerzas de Lodón que surgen como consecuencia de dipolos inducidos en una molécula por otra. En este caso los electrones de una molécula son débilmente atraídos hacia el núcleo de otra pero entonces los electrones de esta son repelidos por los electrones de la primera. El resultado es una distribución desigual de la densidad electrónica y , en consecuencia , un dipolo incluido . Las diferentes interacciones dipolo-dipolo (atractivas y repulsivas) se denominan conjuntamente fuerzas de van der Waals. La distancia entre las moléculas juega un importante papel en la intensidad de dichas fuerzas. Se llama radio de van der Waals a la distancia a la que la fuerza atractiva es máxima .Cuando dos átomos se aproxima a distancias mas cortas que el radio de van der Waals, se desarrollan fuerzas repulsivas entre los núcleos y las capas electrónicas . Cuando la distancia entre dos moléculas es mayor al radio de van der Waals las fuerzas atractivas entre las moléculas disminuyen.
Enlace iónicoLos enlaces iónicos se pueden formar entre elementos muy electropositivos (metálicos) y elementos muy electronegativos (no metales) . En el proceso de ionización los electrones son transferidos desde los átomos de los elementos electropositivos a los átomos de los elementos electronegativos, produciendo cationes cargados positivamente y aniones cargados negativamente. Las fuerzas de enlace son debidas a la fuerza de atracción electrostática o culombiana entre iones con carga opuesta. Los enlaces iónicos se forman entre iones opuestamente cargados por que se produce una disminución neta de la energía potencial para los iones enlazados
Enlace covalente Un segundo tipo de enlace atómico primario es el enlace covalente. Mientras el enlace iónico involucra átomos muy electropositivos y electronegativos, el enlace covalente se forma entre átomos con pequeñas diferencias de electronegatividad y ubicados muy próximos en la tabla periódica. En el enlace covalente los átomos generalmente comparten sus electrones externos s y p como otros átomos , de modo que cada átomo alcanza la configuración de gas noble. En un enlace covalente sencillo cada uno de los átomos contribuye con un electrón a la formación del par de electrones de enlace, y las energías de los dos átomos asociadas con el enlace covalente son menores (mas estables) como consecuencia de la interacción de los electrones. En el enlace covalente, se pueden formar enlaces múltiples de pares de electrones por un átomo consigo mismo o con otros átomos.
Redes cristalográficas existentesSistemas cristalográficos Los cristalógrafos han demostrado que son necesarias solo siete tipos diferentes de celda unidad para crear todas las redes puntuales. La mayor parte de estos siete sistemas cristalinos presentan variaciones de la celda unida básica. A. J. Bravais mostró que catorce celdas unidad estándar podían describir todas las estructuras reticulares posibles .Hay cuatro tipos de celdas unidad :
Sencilla Centrada en el cuerpo Centrada en las caras Centrada en la baseEn el sistema cúbico hay tres tipos de celdas unidad: cúbica sencilla, cúbica centrada en el cuerpo y cúbica centrada en las caras. En el sistema ortorrómbico están representados los cuatro tipos. En el sistema tetragonal hay solo dos: sencilla y centrada en el cuerpo. En el sistema monoclínico tiene celdas unidad sencilla y centrada en la base, y los sistemas romboédrico hexagonal y triclínico, tienen solo una celda unidad .
Estructuras cristalográficasLa mayoría de los metales elementales alrededor del 90 % cristalizan en tres estructuras cristalinas densamente empaquetadas: cúbica centrada en el cuerpo (BCC), cúbica centrada en las caras (FCC) y hexagonal compacta (HCP). La estructura HCP es una modificación más densa de la estructura cristalina hexagonal sencilla. La mayor parte de los metales cristalizadas en esas estructuras densamente empaquetadas debido a que se libera energía a medida que los átomos se aproximan y se enlazan cada vez más estrechamente entre sí. De este modo, dichas estructuras densamente empaquetadas se encuentran es disposiciones u ordenamientos de energía cada vez más baja y estable Examinemos ahora detalladamente la disposición de los átomos en las celdas unidad de las tres principales estructuras cristalinas. Aunque solo sea una aproximación consideremos a los átomos de estas estructuras como esferas rígidas. La distancia entre los átomos en las estructuras cristalinas puede ser determinada experimentalmente por análisis de rayos X. Por ejemplo, la distancia interatómica entre dos átomos de aluminio en un fragmento de aluminio puro a 20 0 C es 0.2862 nm. Se considera que el radio del aluminio en el aluminio metal es la mitad de la distancia interatómica, o 0.143 nm.
Planos cristalinosDirección en la celdaA menudo, es necesario referirnos a posiciones específicas en las redes cristalinas. Esto es especialmente importante para metales y aleaciones con propiedades que varían con la orientación cristalográfica. Para cristales cúbicos los índices de las direcciones cristalográficas son los componentes vectoriales de las direcciones resueltos a lo largo de cada eje coordenado y reducido a los enteros mas pequeños .Para indicar en un diagrama la dirección en una celda cúbica unitaria dibujamos un vector de dirección desde el origen (que es normalmente una esquina de la celda cúbica) hasta que sale la superficie del cubo .Las coordenadas de posición de la celda unidad donde el vector de posición sale de la superficie del cubo despues de ser convertidas a enteros son los indices de dirección .Los indices de dirección se encierran entre corchetes sin separación por comas.
Planos en una celda unitariaLas superficise cristalinas en celdillas unidad HCP pueden ser identificadas comúnmente utilizando cuatro indices en lugar de tres. Los indices para los planos cristalinos HCP ,llamados indices Miller-Bravais, son designados por las letras h , k , i , l y encerrados entre parentesis ( hkil ) . estos indices hexagonales de 4indices estan basados en un sistema coordenado de 4 ejes .Existen 3 ejes basicos , a1 , a2 , a3, que forman 1200 entre si. El cuarto eje o eje c es el eje vertical y esta localizado en el centro de la celdilla unidad . La unidad a de medida a lo largo de los ejes a1 a2 a3 es la distancia entre los átomos a lo largo de estos ejes .la unidad de medida a lo largo del eje es la altura de la celdilla unidad . Los recíprocos de las intersecciones que un plano cristalino determina con los ejes , a1 , a2 , a3 proporciona los indices h , k e i mientras el recíproco de la intersección con el eje c da el índice l
Notación para planosLos planos basales de la celdilla unidad HCP son muy importantes para esta celdilla unidad puesto que el plano basal de la celdilla HCP es pralelo a los ejes , a1 , a2 , a3 las intersecciones de este plano con estos ejes serán todas de valor infinito . Así , a1 = ¥ , a2 = ¥ a3 = ¥ El eje c , sin embargo , es unico puesto que el plano basal superior intersecciona con el eje c a una distancia unidad . Tomando los reciprocos de estas intersecciones tenemos los indices de Miller-Bravais para el plano Basal HCP. Así , H =0 K=0 I = 0 y L=1. El plano basal es , por tanto un plano cero-cero-cero-uno o plano (0001) .
Importancia del indice de MilllerA veces es necesario referirnos a planos reticulares específicos de átomos dentro de una estructura cristalina o puede ser interesante conocer la orientación cristalográfica de un plano o grupo de planos en una red cristalina. Para identificar planos cristalinops es estructuras cristalinas cúbicas se usa la notación de Miller . Los indices de Miller de un plano cristalino estan definidos como los reciprocos de las intersecciones , que el plano determina con los ejes x , y , z de los tres lados no paralelos del cubo unitario .Las aristas de una celda cúbica unitaria presentan longitudes unitarias y las intersecciones de los planos de una red se miden en base a estas longitudes unitarias .El procedimiento de determinación de los indices de Miller para un plano de un cristal cúbico es el siguiente:
Escoger un plano que no pase por el origen en (0,0,0) Determinar las interacciones del plano en base a los ejes x,y,z cristalográficos para un cubo unitario , estas interacciones pueden ser fraccionarias Construir los recíprocos de estas intersecciones Despejar fracciones y determinar el conjunto mas pequeño de números esteros que estén en la misma razón que las intersecciones. Esos números enteros son los índices de Miller de un plano cristalográfico y se encierran entre paréntesis sin usar comas. La notación (hkl) se usa para indicar índices de Miller en sentido general , donde h ,k, y l son los indices de Miller para un plano de un cristal cúbico de ejes x,y,z respectivamente.


5. Estructuras cristalinas
La primera clasificación que se puede hacer de materiales en estado sólido, es en función de cómo es la disposición de los átomos o iones que lo forman. Si estos átomos o iones se colocan ordenadamente siguiendo un modelo que se repite en las tres direcciones del espacio, se dice que el material es cristalino. Si los átomos o iones se disponen de un modo totalmente aleatorio, sin seguir ningún tipo de secuencia de ordenamiento, estaríamos ante un material no cristalino ó amorfo. En el siguiente esquema se indican los materiales sólidos cristalinos y los no cristalinos.
En el caso de los materiales cristalinos, existe un ordenamiento atómico (o iónico) de largo alcance que puede ser estudiado con mayor o menor dificultad. Ahora bien, realmente ¿necesitamos estudiar los materiales a nivel atómico?.
Para responder a esta cuestión, podemos estudiar las principales propiedades de dos materiales tan conocidos como son el grafito (Fig.1) y el diamante (Fig.2). El grafito es uno de los materiales más blandos (tiene un índice de dureza entre 1y 2 en la escala Mohs), es opaco (suele tener color negro), es un buen lubricante en estado sólido y conduce bien la electricidad. Por contra, el diamante es el material más duro que existe (10 en la escala Mohs), es transparente, muy abrasivo y un buen aislante eléctrico.
Como vemos, son dos materiales cuyas principales propiedades son antagónicas. Pero, si pensamos en sus componentes, nos damos cuenta que tanto uno como el otro están formados únicamente por carbono. Entonces, ¿a que se debe que tengan propiedades tan dispares?. La respuesta está en el diferente modo que tienen los átomos de carbono de enlazarse y ordenarse cuando forman grafito y cuando forman diamante; es decir, el grafito y el diamante tienen distintas estructuras cristalinas. Ruina Universal de Ensayos: capacidad máxima de 120kN (12 t), con cuatro escalas, se realizan ensayos de tensión, compresión, flexión y corte. Durómetro Universal Digital: durezas Rockwell, Brinell y Vickers. Péndulo de Impacto: ensayos según métodos Charpy e Izod, capacidad máxima 300J. Para metales. Péndulo de Impacto para Plásticos: capacidad máxima aproximada 8J. Cámara Climática: ensayos con temperatura y humedad variable. Máquina de Fatiga por Flexión Rotativa: capacidad máxima de 270kg*cm.
6. Aceros.
No se conoce con exactitud la fecha en que se descubrió la técnica de fundir mineral de hierro para producir el metal para ser utilizado. Los primeros utensilios de hierro descubiertos por los arqueólogos en Egipto datan del año 3.000 a.c., y se sabe que antes de esa época se empleaban adornos de hierro; los griegos ya conocían hacia el 1.000 a.c, la técnica de cierta complejidad para endurecer armas de hierro mediante tratamiento térmico.Las aleaciones producidas por los primeros artesanos del hierro (y, de hecho, todas las aleaciones de hierro fabricadas hasta el siglo XIV d.c.) se clasifican en la actualidad como hierro forjado. Para producir esas aleaciones se calentaba una masa de mineral de hierro y carbón vegetal en un horno o forja con tiro forzado. Ese tratamiento reducía el mineral a una masa esponjosa de hierro metálico lleno de unaescoria formada por impurezas metálicas y cenizas de carbón vegetal. Esta esponja de hierro se retiraba mientras permanecía incandescente y se golpeaba con pesados martillos para expulsar la escoria y dejar el hierro. El hierro producido en esas condiciones solía contener un 3% de partículas de escoria y un 0,1% de otras impurezas. En ocasiones esta técnica de fabricación producía accidentalmenteauténtico acero en lugar de hierro forjado. Los artesanos del hierro aprendieron a fabricar acero calentando hierro forjado y carbón vegetal en recipientes de arcilla durante varios días, con lo que el hierro absorbía suficiente carbono para convertirse en acero.
Después del siglo XIV se aumentó el tamaño de los hornos utilizados para la fundición y se incrementó el tiro para forzar el paso de los gases de combustión por la carga o mezcla de materias primas. En estos hornos de mayor tamaño el mineral de hierro de la parte superior del horno se reducía a hierro metálico y a continuación absorbía más carbono como resultado de los gases que lo atravesaban. El producto de estos hornos era el llamado arrabio, una aleación que funde a una temperatura menor que el acero o el hierro forjado. El arrabio se refinaba después para fabricar acero.La producción moderna de arrabio emplea altos hornos que son modelos perfeccionados de los usados antiguamente. El proceso de refinado del arrabio para la producción de acero mediante chorros de aire se debe al inventor británico Henry Bessemer, que en 1855 desarrolló el horno o convertidor que lleva su nombre. Desde la década de 1960 funcionan varios minihornos que emplean electricidad para producir acero a partir de chatarra. Las aleaciones de hierro y carbono -aceros y fundiciones- son las aleaciones metálicas más importantes de la civilización actual. Por su volumen, la producción de fundición y de acero supera en más de diez veces la producción de todos los demás metales juntos. Corrientemente se da el nombre de acero y fundición, a las aleaciones hierro - carbono (si tienen más del 2% de C son fundiciones y si tienen menos del 2% de C son aceros).El hierro forma soluciones con muchos elementos: con los metales, soluciones por sustitución, con el carbono, nitrógeno e hidrógeno, soluciones por inserción.
La solubilidad del carbono en el hierro depende de la forma cristalográfica en que se encuentra el hierro. La solubilidad del carbono en el hierro ( cúbica de cuerpo centrado) es menor que el 0,02% y en el hierro (cúbica da caras centradas) es hasta el 2%.Se distinguen tres grupos de aceros al carbono: eutectoides, que contienen cerca de un 0,8% de C, cuya estructura está constituida únicamente por perlita: Hipoeutectoides, que contienen menos del 0,8% de C, con estructura formada por ferrita y perlita; e Hipereutectoides, que contienen del 0,8 al 2% de C y cuya estructura consta de perlita y cementita.
7. Microestructuras De Los Aceros
Los constituyentes metálicos que pueden presentarse en los aceros al carbono son: ferrita, cementita, perlita, sorbita, troostita, martensita, bainita, y rara vez austenita, aunque nunca como único constituyente. También pueden estar presentes constituyentes no metálicos como óxidos, silicatos, sulfuros y aluminatos.El análisis de las microestructuras de los aceros al carbono recocidos y fundiciones blancas deben realizarse en base al diagrama metaestable Hierro-carburo de hierro o Cementita.
Diagrama Fe-CLas microestructuras que presenta el diagrama de equilibrio para los aceros al carbono son:FERRITA (Hierro a) Es una solución sólida de carbono en hierro alfa, su solubilidad a la temperatura ambiente es del orden de 0.008% de carbono, por esto se considera como hierro puro, la máxima solubilidad de carbono en el hierro alfa es de 0,02% a 723 °C.
Microestructura del acero al carbono, cristales blancos de ferritaLa ferrita es la fase más blanda y dúctil de los aceros, cristaliza en la red cúbica centrada en el cuerpo, tiene una dureza de 90 Brinell y una resistencia a la tracción de 28 kg/mm2, llegando hasta un alargamiento del 40%. La ferrita se obsera al microscopio como granos poligonales claros.En los aceos, la ferrita puede aparecer como cristales mezclados con los de perlita, en los aceros de menos de 0.6%C, figura 6; formando una red o malla que limita los granos de perlita, en los aceros de 0.6 a 0.85%C en forma de agujas o bandas circulares orientados en la dirección de los planos cristalográficos de la austenita como en los aceros en bruto de colada o en aceros que han sido sobrecalentados. Este tipo de estructura se denomina Widmanstatten.La ferrita también aparece como elemento eutectoide de la perlita formando láminas paralelas separadas por otras láminas de cementita, en la estructura globular de los aceros de herramientas aparece formando la matriz que rodea los glóbulos de cementita, figura 9, en los aceros hipoeutectoides templados, puede aparecer mezclada con la martensita cuando el temple no ha sido bien efectuado.


8. Cementita
Es el carburo de hierro de fórmula Fe3C, contiene 6.67 %C y 93.33 % de hierro, es el microconstituyente más duro y frágil de los aceros al carbono, alcanzando una dureza Brinell de 700 (68 Rc) y cristaliza en la red ortorómbica.
Microestructura del acero 1%C, red blanca de dementitaEn las probetas atacadas con ácidos se observa de un blanco brillante y aparece como cementita primaria o proeutéctica en los aceros con más de 0.9%C formando una red que envuelve los granos de perlita, formando parte de la perlita como láminas paralelas separadas por otras láminas de ferrita, se presenta en forma de glóbulos o granos dispersos en una matriz de ferrita, cuando los aceros de alto carbono se han sometido a un recocido de globulización, en los aceros hipoeutectoides que no han sido bien templados.
PerlitaEs el microconstituyente eutectoide formado por capas alternadas de ferrita y cementita, compuesta por el 88 % de ferrita y 12 % de cementita, contiene el 0.8 %C. Tiene una dureza de 250 Brinell, resistencia a la tracción de 80 kg/mm2 y un alargamiento del 15%; el nombre de perlita se debe a las irisaciones que adquiere al iluminarla, parecidas a las perlas. La perlita aparece en general en el enfriamiento lento de la austenita y por la transformación isotérmica de la austenita en el rango de 650 a 723°C.
Microestructura del acero al carbono, cristales oscuros de perlitaSi el enfriamiento es rápido (100-200°C/seg.), la estructura es poco definida y se denomina Sorbita, si la perlita laminar se somete a un recocido a temperatura próxima a 723°C, la cementita adopta la forma de glóbulos incrustados en la masa de ferrita, denominándose perlita globular.
AustenitaEs el constituyente más denso de los aceros y está formado por una solución sólida por inserción de carbono en hierro gamma. La cantidad de carbono disuelto, varía de 0.8 al 2 % C que es la máxima solubilidad a la temperatura de 1130 °C. La austenita no es estable a la temperatura ambiente pero existen algunos aceros al cromo-níquel denominados austeníticos cuya estructura es austenita a temperatura ambiente.La austenita está formada por cristales cúbicos centrados en las caras, con una dureza de 300 Brinell, una resistencia a la tracción de 100 kg/mm2 y un alargamiento del 30 %, no es magnética.
Microestructura de la austenitaLa austenita no puede atarcarse con nital, se disuelve con agua regia en glicerina apareciendo como granos poligonales frecuentemente maclados, puede aparecer junto con la martensita en los aceros templados.
MartensitaEs el constituyente de los aceros templados, está conformado por una solución sólida sobresaturada de carbono o carburo de hierro en ferrita y se obtiene por enfriamiento rápido de los aceros desde su estado austenítico a altas temperaturas.El contenido de carbono suele variar desde muy poco carbono hasta el 1% de carbono, sus propiedades físicas varían con su contenido en carbono hasta un máximo de 0.7 %C.
Microestructura de la martensitaLa martensita tiene una dureza de 50 a 68 Rc, resistencia a la tracción de 170 a 250 kg/mm2 y un alargamiento del 0.5 al 2.5 %, muy frágil y presenta un aspecto acicular formando grupos en zigzag con ángulos de 60 grados.Los aceros templados suelen quedar demasiado duros y frágiles, inconveniente que se corrige por medio del revenido que consiste en calentar el acero a una temperatura inferior a la crítica inferior (727°C), dependiendo de la dureza que se desee obtener, enfriándolo luego al aire o en cualquier medio.
TroostitaEs un agregado muy fino de cementita y ferrita, se produce por un enfriamiento de la austenita con una velocidad de enfriamiento ligeramente inferior a la crítica de temple o por transformación isotérmica de la austenita en el rango de temperatura de 500 a 6000C, o por revenido a 4000C.Sus propiedades físicas son intermedias entre la martensita y la sorbita, tiene una dureza de 400 a 500 Brinell, una resistencia a la tracción de 140 a 175 kg/mm2 y un alargamiento del 5 al 10%. Es un constituyente nodular oscuro con estructura radial apreciable a unos 1000X y aparece generalmente acompañando a la martensita y a la austenita
SorbitaEs también un agregado fino de cementita y ferrita. Se obtiene por enfriamiento de la austenita con una velocidad de enfriamiento bastante inferior a la crítica de temple o por transformación isotérmica de la austenita en la zona de 600 a 650%, o por revenido a la temperatura de 600%. Su dureza es de 250 a 400 Brinell, su resistencia a la tracción es de 88 a 140 kg/mm2 ,con un alargamiento del 10 al 20%.Con pocos aumentos aparece en forma muy difusa como manchas, pero con 1000X toma la forma de nódulos blancos muy finos sobre fondo oscuro, figura 16; de hecho tanto la troostita como la sorbita pueden considerarse como perlita de grano muy fino.
BainitaEs el constituyente que se obtiene en la transformación isotérmica de la austenita cuando la temperatura del baño de enfriamiento es de 250 a 500°C. Se diferencian dos tipos de estructuras: la bainita superior de aspecto arborescente formada a 500-580°C, compuesta por una matriz ferrítica conteniendo carburos. Bainita inferior, formada a 250-4000C tiene un aspecto acicular similar a la martensita y constituida por agujas alargadas de ferrita que contienen delgadas placas de carburos.La bainita tiene una dureza variable de 40 a 60 Rc comprendida entre las correspondientes a la perlita y a la martensita.Los constituyentes que pueden presentarse en los aceros aleados son los mismos de los aceros al carbono, aunque la austenita puede ser único contituyente y además pueden aparecer otros carburos simples y dobles o complejos.
La determinación del tamaño de grano austenítico o ferrítico, puede hacerse por la norma ASTM o por comparación de la microfotografías de la probeta a 100X, con las retículas patrón numeradas desde el 1 para el grano más grueso hasta el 8 para el grano más fino.En el sistema ASTM el grosor del grano austenitico se indica con un número convencional n, de acuerdo con la formula:logG=(n-1)log2Donde G es el número de granos por pulgada cuadrada sobre una imagen obtenida a 100 aumentos; este método se aplica a metales que han recristalizado completamente, n es el número de tamaño de grano de uno a ocho.Forma, tamaño y distribución de los cristales o granos en la microestructura del acero para comparación a 100X Cualquier proceso de producción de acero a partir del Arrabio consiste en quemar el exceso de carbono y otras impurezas presentes en el hierro. Una dificultad para la fabricación del acero es su elevado punto de fusión, 1.400ºC aproximadamente, que impide utilizar combustibles y hornos convencionales. Para superar esta dificultad, se han desarrollado 3 importantes tipos de hornos para el refinamiento del Acero, en cada uno de estos procesos el oxígeno se combina con las impurezas y el carbono en el metal fundido. El oxígeno puede introducirse directamente mediante presión dentro o sobre la carga a través del oxígeno en el aire, o en forma de óxidos de hierro o herrumbre en la chatarra. Esto oxidará algunas impurezas, las que se perderán como gases, mientras otras impurezas reaccionarán con la piedra caliza fundida para formar una escoria que será colada posteriormente.


9. Tipos de hornos
Horno de hogar abierto o crisol El horno de hogar abierto semeja un horno enorme, y se le denomina de esta manera porque contiene en el hogar (fondo) una especie de piscina larga y poco profunda (6m de ancho, por 15 m de largo, por 1 m de profundidad, aproximadamente). El horno se carga en un 30% a un 40% con chatarra y piedra caliza, empleando aire pre-calentado, combustible líquido y gas para la combustión, largas lenguas de fuego pasan sobre los materiales, fundiéndolos. Al mismo tiempo, se quema (o se oxida) el exceso de carbono y otras impurezas como el fósforo, silicio y manganeso.Este proceso puede acelerarse introduciendo tubos refrigerados por agua (lanzas), los que suministran un grueso flujo de oxígeno sobre la carga.Periódicamente, se revisan muestras de la masa fundida en el laboratorio para verificar la composición empleando un instrumento denominado espectrómetro. También se determinan los niveles de carbono.Si se está fabricando acero de aleación, se agregarán los elementos de aleación deseados. Cuando las lecturas de composición son correctas, el horno se cuela y el acero fundido se vierte en una olla de colada.El proceso completo demora de cinco a ocho horas, mientras que el Horno de Oxígeno Básico produce la misma cantidad de acero en 45 minutos aproximadamente. Debido a esto, este horno ha sido virtualmente reemplazado por el de Oxígeno Básico.
Horno De Oxigeno Basico Es un horno en forma de pera que puede producir una cantidad aproximadamente de 300 toneladas de acero en alrededor de 45 minutos.
El horno se inclina desde su posición vertical y se carga con chatarra de acero fría (cerca de un 25%) y luego con hierro derretido, después de ser devuelto a su posición vertical, se hace descender hacia la carga una lanza de oxígeno refrigerada por agua y se fuerza sobre ella un flujo de oxígeno puro a alta velocidad durante 20 minutos. Este actúa como fuente de calor y para la oxidación de las impurezas.Tan pronto como el chorro de oxígeno comienza, se agrega la cal y otros materiales fundentes. La reacción química resultante desarrolla una temperatura aproximada de 1.650º C. El oxígeno se combina con el exceso de carbono acabando como gas y se combina también con las impurezas para quemarlas rápidamente. Su residuo es absorbido por la capa flotante de escoria.Después de haberse completado la inyección de oxígeno, se analiza el contenido de carbono y la composición química de diversas muestras de la masa fundida.Cuando la composición es correcta, el horno se inclina para verter el acero fundido en una olla de colada.Aunque se pueden producir algunos aceros de aleación con este proceso, el ciclo de tiempo aumenta considerablemente, eliminando así su ventaja principal. Consecuentemente, el proceso de oxígeno básico, como el del hogar abierto, se emplea generalmente para producir altos tonelajes de acero con un bajo nivel de carbono, que son los de mayor consumo. Estos aceros con bajo nivel de carbono se utilizan para barras, perfiles y planchas gruesas y delgadas.
Horno De Arco Electrico
Es el más versátil de todos los hornos para fabricar acero. No solamente puede proporcionar altas temperaturas, hasta 1.930ºC, sino que también puede controlarse eléctricamente con un alto grado de precisión. Debido a que no se emplea combustible alguno, no se introduce ningún tipo de impurezas. El resultado es un acero más limpio.Consecuentemente, puede producir todo tipo de aceros, desde aceros con regular contenido de carbono hasta aceros de alta aleación, tales como aceros para herramientas, aceros inoxidables y aceros especiales para los cuales se emplea principalmente. Otras ventaja sobre el Horno de Oxígeno Básico es que puede operar con grandes cargas de chatarra y sin hierro fundido.El Horno de Arco Eléctrico se carga con chatarra de acero cuidadosamente seleccionada. El arrabio fundido se emplea raramente. Si la carga de chatarra es muy baja en carbono, se agrega coque (el cual es casi puro carbono) o electrodos de carbono de desecho, para aumentar así su nivel.Al aplicarse la corriente eléctrica, la formación del arco entre los electrodos gigantes produce un calor intenso. Cuando la carga se ha derretido completamente, se agregan dentro del horno cantidades medidas de los elementos de aleación requeridos.La masa fundida resultante se calienta, permitiendo que se quemen las impurezas y que los elementos de aleación se mezclen completamente.Para acelerar la remoción del carbono, el oxígeno gaseoso se introduce generalmente en forma directa dentro de acero fundido por medio de un tubo o lanza. El oxígeno quema el exceso de carbono y algunas de las impurezas, mientas otras se desprenden como escoria por la acción de varios fundentes.Cuando la composición química de la masa fundida cumple con las especificaciones, el horno se inclina para verter el acero fundido dentro de una olla de colada.Este horno puede producir una hornada de acero en un período de dos a seis horas, dependiendo del horno individual.
CromadoEs una técnica de protección contra la corrosión que tiene muchas variantes y se puede aplicar al acero, aluminio, magnesio, y zinc. Esto resulta en la formación de óxidos metálicos en la superficie de la pieza de trabajo que reacciona para formar cromatos metálicos. El cromado de aluminio y magnesio mejora la resistencia a la corrosión considerablemente. Con el acero es mucho menos permanente.
GalvanizadoEs una técnica para protección contra la corrosión que se aplica solo a aceros suaves, hierro fundido y aleaciones de acero en donde las piezas de trabajo son sumergidas en zinc liquido a una temperatura de 500ºC. Se forma en la superficie de la pieza de trabajo una aleación de zinc/hierro dándole a la pieza una capa adherente de zinc.Antes del galvanizado, la superficie del metal debe encontrarse en un estado moderado de limpieza. Esto se cumple generalmente por la limpieza ácida o blasteado ligero.Las capas galvanizadas son de aproximadamente 0.005 pulgadas de grosor y pueden dar una protección por 10 o 20 años.
NitrurizadoEs un proceso para endurecimiento de superficies utilizado solo en ciertos tipos de aceros, que resulta en una de las superficies más duras alcanzables por tratamientos con calor. El proceso consiste en mantener las piezas de trabajo en una atmósfera de amoniaco a 500ºC por un máximo de 100 horas. Bajo estas condiciones el nitrógeno atómico se combina con el hierro en la superficie para formar nitrato de hierro. El nitrógeno lentamente se difunde en la superficie siempre y cuando se mantenga la temperatura adecuada. Por lo que el grosor de la superficie endurecida resultante depende de la duración del tratamiento por calor.


10. Conclusiones
Es sin duda impresionante la manera en la que han evolucionado los materiales y lo importante que es conocer sus propiedades no tan solo físicas o mecánicas sino también a otro nivel como bien podría ser a nivel atómico ya que de esto depende en buena parte el comprender como habrá de comportarse un material en ciertas condiciones y de esa manera conjeturar algunas características como su dureza o su resistencia a algunos esfuerzos, la verdad este curso de Materiales ha resultado de mucho provecho para cada uno de nosotros los alumnos de ingenieria, hemos aprendido como conocer a los materiales por sus propiedades asi como por su tipo, sus estructuras internas y externas, que nos llevamos del curso?, conocimiento provechoso y una mayor conciencia de los materiales y su aprovechamiento a lo largo de este curso y a lo largo de la historia, conocer nuestro entorno es sumamente importante y poder aprovecharlo y modificarlo nos dara mayor comodidad y tambien una mayor economia en base al aprovechaniento que de el obtengamos, podemos sin lugar a dudas decir que los materiales forman una parte importante de la sociedad actual, a donde usted mire encontrara diversos materiales en sus miles de formas y modificaciones que el hombre, el ingeniero ha hecho con el unico propósito de sacar mayor ventaja y poder adaptar su medio a las circunstancias requeridas en su momento, la sociedad cambia y con ella sus necesidades de toda indole, la industria evoluciona constantemente al igual que la ciencia, gracias a estos cambios podemos ir adelantes y no ser victima de la estatica, hay cambios, hay dinamica, pero esto exije cambios, tan necesarios y grandes como se desen, quizas hasta se requira cambios sociales, cambios de actitud y quizas hasta cambios de estructuras economicas y gubernamentales. La industria a mejorado y progresado a pasos acelerados durante las ultimas tres decadas, el uso de los aceros y toda clase de metales se ha hecho mucho mas comun en las sociedades, la industrialización a exigido el uso de mas y mejores materiales para su desarrollo, hoy tenemos cubierta la mayoria de esas necesidades, pero falta mucho por recorrer, realmente no sabemos hacia donde la sociedad con sus industrias, su ciencia y su tecnología vayan, lo que si sabemos es que tenemos que ser concientes de los cambios y prepararnos para ellos, el afrontarlos adecuadamente, marcara la diferencia entre las economias fuertes, las debiles y las que deben perecer a causa de la mediocridad y la falta de actitud adecuada, podemos mirar hacia veinte años atrás y ver cuantos cambios al dia de hoy se han dado y como las industrias exitosas los afrontaron y como otros hoy ni su recuerdo queda; una actitud y las acciones adecuadas han permitido el desarrollo de tecnologías nuevas y en gran manera mucho mejores que las de hace tan solo diez o cinco años, el progreso nos arrastra y es mejor remar en el sentido que el se desarrolla para ser mejores, tambien no podemos estar a expensas de casar tecnologías, tenemos la obligación de desarrollarlas y sacar adelante a nuestro pais, su economia, no basta saber manejar la tecnología, sino ser padres de ella y poder sacarle el máximo de provecho, hoy es tiempo de contribuir y de mejorar, de lo contrario el resago nos atrapara y pagaremos caro una mala actitud, que en mucho pudimos corregir y que no estuvimos dispuestos. Ojalaesto sirva para visualizar, que un buen salario es bueno, pero aportar a este pais alguna idea, algun proyecto, algun invento; es todavía mucho mejor, el tiempo cambia, nosotros debemos hacerlo para bien de la comunidad y no tan solo para provecho personal, ojala pronto podamos reconocer la falta de una buena actitud y ser protagonistas en la tecnología, ser ser maestros y no aprendices.
11. Bibliografía.
Fundamentos de la ciencia de los materialesWilliam F. Smith 2da. EdicionMc-Graw-Hillhttp://www.cmpl.ipn.mx/Area_Tecnica/Glosario.htm
www.monografias.com www.estructurascristalinas.comApuntes de Tecnologia de los Materiales II.


Metalurgia

Buscar en esta página Ver página para imprimir Enviar
Metalurgia, ciencia y tecnología de los metales, que incluye su extracción a partir de los minerales metálicos, su preparación y el estudio de las relaciones entre sus estructuras y propiedades. Desde tiempos muy remotos, el uso de ciertos metales conocidos, como el cobre, hierro, plata, plomo, mercurio, antinomio y estaño, se convirtió en indispensable para la evolución de las distintas civilizaciones. Por ello, la metalurgia es una actividad a la que el ser humano ha dedicado grandes esfuerzos. Desde la antigüedad ya se aplicaban algunas técnicas metalúrgicas, como el moldeo a la cera perdida utilizado por los chinos, egipcios y griegos; la soldadura inventada por Glauco en el siglo VII a.C., y el tratamiento térmico para el temple con acero utilizado por los griegos. No fue hasta la edad media cuando aparecieron otras técnicas metalúrgicas de importancia, y así, durante el siglo XIII aparecieron los primeros altos hornos y la fundición. Este artículo sólo se refiere a la extracción de metales. Para una información más detallada de la metalurgia de los distintos metales, véanse los artículos sobre cada metal. Véase también Metalografía; Metales.
Los procesos metalúrgicos constan de dos operaciones: la concentración, que consiste en separar el metal o compuesto metálico del material residual que lo acompaña en el mineral, y el refinado, en el que se trata de producir el metal en un estado puro o casi puro, adecuado para su empleo. Tanto para la concentración como para el refinado se emplean tres tipos de procesos: mecánicos, químicos y eléctricos. En la mayoría de los casos se usa una combinación de los tres.
Uno de los métodos de concentración mecánica más sencillos es la separación por gravedad. Este sistema se basa en la diferencia de densidad entre los metales nativos y compuestos metálicos y los demás materiales con los que están mezclados en la roca. Cuando se tritura el mineral o el concentrado de mineral y se suspende en agua o en un chorro de aire, las partículas de metal o del compuesto metálico, más pesadas, caen al fondo de la cámara de procesado y el agua o el aire se llevan la ganga (material residual), más ligera. La técnica de los buscadores de oro para separar el metal de las arenas auríferas mediante cribado, por ejemplo, es un proceso de separación por gravedad a pequeña escala. Del mismo modo, la mayor densidad relativa de la magnetita, un mineral de hierro, permite separarla de la ganga con la que se encuentra mezclada.
La flotación es hoy el método más importante de concentración mecánica. En su forma más simple, es un proceso de gravedad modificado en el que el mineral metálico finamente triturado se mezcla con un líquido. El metal o compuesto metálico suele flotar, mientras que la ganga se va al fondo. En algunos casos ocurre lo contrario. En la mayoría de los procesos de flotación modernos se emplean aceites u otros agentes tensioactivos para ayudar a flotar al metal o a la ganga. Esto permite que floten en agua sustancias de cierto peso. En uno de los procesos que utilizan este método se mezcla con agua un mineral finamente triturado que contiene sulfuro de cobre, al que se le añaden pequeñas cantidades de aceite, ácido y otros reactivos de flotación. Cuando se insufla aire en esta mezcla se forma una espuma en la superficie, que se mezcla con el sulfuro pero no con la ganga. Esta última se va al fondo, y el sulfuro se recoge de la espuma. El proceso de flotación ha permitido explotar muchos depósitos minerales de baja concentración, e incluso residuos de plantas de procesado que utilizan técnicas menos eficientes. En algunos casos, la llamada flotación diferencial permite concentrar mediante un único proceso diversos compuestos metálicos a partir de un mineral complejo.
Los minerales con propiedades magnéticas muy marcadas, como la magnetita, se concentran por medio de electroimanes que atraen el metal pero no la ganga (véase Magnetismo).
La concentración electrostática utiliza un campo eléctrico para separar compuestos de propiedades eléctricas diferentes, aprovechando la atracción entre cargas opuestas y la repulsión entre cargas iguales.
Los métodos de separación o concentración química son en general los más importantes desde el punto de vista económico. Hoy, esta separación se utiliza con frecuencia como segunda etapa del proceso, después de la concentración mecánica. La fundición proporciona un tonelaje mayor de metal refinado que cualquier otro proceso. Aquí, el mineral metálico, o el concentrado de un proceso de separación mecánica, se calienta a elevadas temperaturas junto con un agente reductor y un fundente. El agente reductor se combina con el oxígeno del óxido metálico dejando el metal puro, mientras que el fundente se combina con la ganga para formar una escoria líquida a la temperatura de fundición, por lo que puede retirarse de la superficie del metal. La producción de hierro en los altos hornos es un ejemplo de fundición (véase Siderurgia); este mismo proceso se emplea para extraer de sus minerales el cobre, el plomo, el níquel y muchos otros metales.
La amalgamación es un proceso metalúrgico que utiliza mercurio para disolver plata u oro formando una amalgama. Este sistema ha sido sustituido en gran medida por el proceso con cianuro, en el que se disuelve oro o plata en disoluciones de cianuro de sodio o potasio. En los diversos procesos de lixiviación o percolación se emplean diferentes disoluciones acuosas para disolver los metales contenidos en los minerales. Los carbonatos y sulfuros metálicos se tratan mediante calcinación, calentándolos hasta una temperatura por debajo del punto de fusión del metal. En el caso de los carbonatos, en el proceso se desprende dióxido de carbono, y queda un óxido metálico. Cuando se calcinan sulfuros, el azufre se combina con el oxígeno del aire para formar dióxido de azufre gaseoso, y también resulta un óxido metálico. Los óxidos se reducen después por fundición.
La sinterización y la nodulación aglomeran partículas finas de mineral. En la primera se utiliza un combustible, agua, aire y calor para fundir las partículas finas de mineral y convertirlas en una masa porosa. En la nodulación, las partículas se humedecen, se convierten en pequeños nódulos en presencia de un fundente de piedra caliza y a continuación se cuecen.
Otros procesos, entre los que destacan la pirometalurgia (metalurgia de altas temperaturas) y la destilación, se emplean en etapas posteriores de refinado en diversos metales. En el proceso de electrólisis (véase Electroquímica), el metal se deposita en un cátodo, bien a partir de disoluciones acuosas o en un horno electrolítico. El cobre, el níquel, el cinc, la plata y el oro son varios ejemplos de metales refinados por deposición a partir de disoluciones acuosas. El aluminio, el bario, el calcio, el magnesio, el berilio, el potasio y el sodio se procesan en hornos electrolíticos.





Alto horno
Para transformar mineral de hierro en arrabio útil hay que eliminar sus impurezas. Esto se logra en un alto horno forzando el paso de aire extremadamente caliente a través de una mezcla de mineral, coque y caliza, la llamada carga. Unas vagonetas vuelcan la carga en unas tolvas situadas en la parte superior del horno. Una vez en el horno, la carga es sometida a chorros de aire de hasta 870 ºC (el horno debe estar forrado con una capa de ladrillo refractario para resistir esas temperaturas). El metal fundido se acumula en la parte inferior. Los residuos (la escoria) flotan por encima del arrabio fundido. Ambas sustancias se extraen periódicamente para ser procesadas.